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Matrix cracking initiated by fibre breaks in 
model composites 

A. N. GENT, C. WANG 
Institute of Polymer Engineering, The University of Akron, Akron, OH 44325, USA 

Fracture of resin in a composite material can be initiated by a tensile break in a fibre. This 
process has been investigated for a simple model composite, consisting of two inextensible 
rods placed along the axis of a cylindrical elastic block and touching in the centre. The rods 
represent a broken fibre. Energy release rates, G, were calculated by finite element methods for 
a circular crack growing outwards from the point where the rod ends separated as they were 
pulled apart. Results are compared with experimental observations on cracking of a silicone 
rubber cylinder containing two steel rods. It was found that a crack grew outwards under 
increasing load until its radius reached a certain size, approximately half-way to the surface of 
the resin cylinder. At this point, G reached a minimum value and then increased. 
Simultaneously, the crack accelerated and the sample broke. Forces required to propagate the 
crack were successfully predicted by linear elastic fracture mechanics at all stages of crack 
growth and for a"wide range of fibre and sample radii. In particular, good agreement was 
obtained with the maximum force that the model system could support, i.e. the breaking load. 
When the sample was surrounded by a rigid tube, representing neighbouring fibres 
surrounding the broken one, growth of a crack required an increasing load at all stages. The 
sample finally fractured when the broken fibre pulled out with resin still attached to it. 
Application of these results to unidirectional fibre-reinforced materials is discussed. 

1. I n t r o d u c t i o n  
Fibre-reinforced composites are lightweight and 
strong materials, with several possible modes of rup- 
ture. At present there is no satisfactory theory relating 
strength of composites to properties of the constituent 
materials, even in the simplest cases. Two models of a 
composite with continuous fibre reinforcement are 
employed here to study the consequences of a fibre 
break. The first model is shown in Fig. la. Two 
identical steel rods were embedded along the axis of a 
cylindrical block of silicone rubber resin, with their 
ends in contact. They were treated with a primer to 
give good bonding to the silicone rubber. Because of 
the great difference in Young's modulus of steel and 
silicone resin, the rods can be considered to be in- 
extensible in comparison with the elastic matrix. Thus, 
when the sample is put under a tensile load all of the 
strain energy is stored in the matrix resin, assumed for 
simplicity to be linearly elastic. 

The second modet was used to investigate the effect 
of neighbouring fibres on a crack propagating out- 
wards from the initial break. This is shown in Fig. lb. 
It differs from the first model by the addition of a rigid 
tube enclosing the resin cylinder and bonded to it. The 
sample thus consists of a tube of silicone resin, bonded 
to a broken rigid fibre at its centre, and to a concentric 
rigid tube surrounding it. The external tube represents 
the ring of parallel fibres surrounding a given fibre in a 
multi-fibre composite. Strong bonding between the 

resin, the central fibre, and the external tube, ensured 
that adhesive failures did not occur in the experiments. 

A Griffith fracture criterion is applied, as follows [t]:  

- ~ W / ~ A h  >_ Gr (1) 

where W is elastic strain energy stored in the system 
(in the present case, in the resin only), A is crack area 
and Gc is fracture energy of the resin. The derivative is 
evaluated at constant length, l, and hence displace- 
ment, so that the applied force does no further work as 
the crack grows. Thus, energy required for fracture is 
obtained solely from elastically stored energy. The 
left-hand side of Equation l, termed the strain energy 
release rate, is denoted G hereafter. 

Equation 1 gives a necessary condition for a crack 
to propagate: the rate of release of strain energy mutt  
reach a critical value. In some cases, crack growth will 
be stable, i.e. the applied load must be increased to 
grow the crack further. In other cases growth is un- 
stable, resulting in catastrophic failure. The criterion 
for stable growth is 

dG/dA < 0 G = Gc (2) 

When a fibre breaks, two types of failure may ensue. 
A debond may propagate along the fibre/matrix inter- 
face in the form of a cylindrical crack running in the 
fibre direction, or a planar (circular) crack may grow 
outwards into the matrix material at right angles to 
the fibre. Which mode of failure takes place depends 
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Figure 1 (a) Sketch of the first model. A resin block contains two 
rods with their ends touching, representing a broken fibre. (b) 
Sketch of the second model. A rigid tube, representing unbroken 
fibres, surrounds a resin cylinder containing a broken fibre. 

on the geometry and mode of loading of the specimen 
and the relative strength of adhesion compared to 
strength of the resin. If adhesion is relatively weak, a 
crack will propagate along the interface as a debond. 
On the other hand, if adhesion is strong, then a 
perpendicular crack will grow outwards into the resin 
- which is the case considered here. 

Debonding of fibres, "pull-out", and repeated frac- 
ture of fibres as a result of progressive failure of the 
bond between fibre and resin, have been examined 
elsewhere [2-5]. A critical force is required to initiate 
an interfacial crack at the fibre end. Values were 
calculated from a Griffith fracture criterion, Equation 
1, with G~ replaced by a fracture energy for rupture of 
the interfacial bond, denoted Ga [6]. (Values of G a a r e  

generally smaller than G~.) 
As a fibre is debonded, frictional resistance to pull- 

out increases and the force needed to propagate the 
debond increases continuously with the length debon- 
ded [3]. This effect can lead to repeated breaking of 
the fibre, termed "fragmentation". The frictional effect 
has been minimized in other work by using "push- 
out", instead of "pull-out", mechanics [4]. In practice, 
the main parameter which determines whether debon- 
ding will occur or not in a given composite, is Ga, the 
energy required to debond unit area of the 
fibre-matrix interface. 

Compared with fibre pull-out, the mechanics of 
resin cracking have received little attention. Results 
for two extreme cases are well-known. Growth of a 
small penny-shaped crack of radius a in a homogen- 
eous material has been analysed by Sack [7]. The 
critical far-field tension stress is 

(~2 = ~EGc/3a  (3) 

The corresponding problem for a circular debond 
located at the interface between an elastic half-space 
and a rigid substrate was solved by Mossakovskii and 
Rybka [8]. The result is similar 

q2 = 2rcEGc/3 a (4) 

the additional factor of 2 arising from the presence of 
elastically stored'energy in only one-half of the com- 
posite. 

These examples can be regarded as extreme cases of 
matrix cracking [2]. They both predict catastrophic 
growth of the initial crack when the critical condition 
is achieved, because the stress required to propagate a 
crack decreases as the crack radius increases. The 
more complex case when a broken fibre is the initiator 
of a crack has been considered by Mullin et al. [9]. 
They considered a single inextensible fibre embedded 
in an elasto-plastic resin and found that either one 
circular crack, two inclined-conical cracks, both, or 
neither, formed at the break and grew into the matrix. 
Which process occurred depended on the particular 
combination of fibre and matrix considered. Mahishi 
and Adams [10, 11] used a finite element model 
(FEM) to examine crack propagation in an elasto- 
plastic matrix material. They found that the stress 
intensity factor increased with crack radius up to a 
certain point. Thereafter, unstable crack growth was 
predicted to occur. 

A greater release of strain energy may be obtained 
for a cylindrical crack that propagates along the fibre, 
in the resin but as close to the fibre as possible, rather 
than for a circular crack growing at right angles to the 
fibre. This is probably the case when the fibre radius is 
small in comparison to the radius of the cylinder of 
resin [2]. We are concerned here only with growth of 
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circular cracks, as observed when the fibre radius is 
relatively large compared to that of the resin cylinder 
surrounding it and the bonding between fibre and 
resin is strong. 

Experimental measurements of crack growth and 
breaking force have been carried out for the simple 
two-rod model, using various ratios of rod radius to 
resin cylinder radius. The results are compared with 
theoretical predictions from FEM calculations. The 
objectives of the study are to elucidate the principal 
factors affecting resin cracking initiated by a broken 
fibre and to predict the strength of a model fibre 
composite when this is the mode of failure. The ana- 
lysis is also relevant to the widely used "fragmentation 
test" for adhesion between resin and fibre [12-15]. 

2. Stress intensity factors and strain 
energy release rate 

The stress field around a broken fibre end is quite 
complex and analytical solutions are rather difficult to 
obtain. Finite element numerical techniques have been 
widely used, therefore, to determine crack tip stress 
fields and stress intensity factors. In some cases special 
crack tip elements were employed to deal with the 
stress singularity at the crack tip [16]. But stress 
intensity factors can also be derived from energy 
release rates, as described below. Finite element 
methods were used here to derive values of energy 
release rate, G, for various sizes of crack in the resin, 
from the effect of a crack on the sample compliance. 
Dixon [17] showed that the stress field in the immedi- 
ate vicinity of the crack tip makes relatively little 
contribution to the overall displacement of the system, 
and hence to the compliance, so that excessive refine- 
ment of the mesh at the crack tip is not necessary. This 
is the principal advantage of energy methods as em- 
ployed here. 

The first step is to calculate the elastic compliance, 
C, of specimens containing cracks of increasing radius, 
a. Strain energy release rates associated with the cre- 
ation of a new crack surface are then obtained by 
numerical differentiation of the relation between com- 
pliance and crack area, A [18] 

G = (F2/2)~?C/~?A = (F2/4~a)c~C/~?a (5) 

The following procedure was employed. First, for a 
given value of crack radius, a, the displacement, 6, was 
calculated for a given tensile force, F, applied to the 
outer ends of the rods. In this way the compliance, C, 
was determined, C = ~ / F .  Then, by incrementing the 
crack radius, the rate of change of compliance with 
crack radius was evaluated and hence G found from 
Equation 5. Finally values of the applied force, F, at 
which a given crack would grow were calculated from 
Equation 5 by replacing the value of G with its critical 
value, the fracture energy, Go, of the resin. Hence 

F 2 = 4~aG~/(c~C/Oa) (6) 

In linear elastic f racture  mechanics, the relation 
between energy release rate and stress intensity factor, 
K, in plane strain is [18] 

K 2 = E G / ( 1  - v z) (7) 

where E is Young's modulus and v is Poisson's ratio of 
the resin. The dimensionless stress intensity factor, Y, 
is defined by [18] 

K = Ycy (Tta) 1/2 (8) 

where c~ is the far-field stress = F/rcRZo, where Ro is 
the radius of the resin block. Values of K and Y can 
thus be calculated from G by means of Equations 7 
and 8, and values of breaking force, Fb, obtained on 
substituting a critical value for K, denoted Kc, in 
Equation 8. Thus, exactly equivalent calculations can 
be carried out in terms of stress intensity, K, and its 
critical value, K c, in place of strain energy release rate, 
G, with a critical value, Q .  

3. Experimental  procedure and FEM 
calculations 

3.1. Preparation of test pieces and 
properties of the resin 

Transparent silicone resin (Sylgard S-184, Dow Cor- 
ning Corporation) containing 10% by weight of cur- 
ing agent (Sylgard C-184, Dow Coming Corporation) 
was used as matrix material, and flat-ended steel rods 
as fibres. To obtain good bonding to the resin the 
cylindrical surfaces of the rods were first polished with 
fine emery paper, cleaned with isopropanol and dried. 
They were then immersed in Primer 92-023 (Dow 
Corning Corporation) for 24 h. A small amount of 
partially cured resin was used to glue two rods to- 
gether end-to-end. The joined rods were then carefully 
placed along the axis of a plastic tube, used as a mould 
for casting the cylinder of resin. Uncured silicone resin 
was poured into the tube to surround and encapsulate 
the steel rods. Curing was effected by heating the 
assembly for 12 h at 110 ~ Samples were made with 
different combinations of rod radius, Rj, and external 
radius, Ro, of the resin cylinder: R i = 0.435-1.16 mm; 
Ro = 3.0 and 5.6 ram. All samples had a length, L, of 
50 ram. 

For the second set of experiments, glass tubes were 
bonded to the external surface of the cured resin 
cylinder to simulate the constraints due to neigh- 
bouring fibres. The internal and external radii of the 
glass tubes were 3 and 4ram, respectively. Strong 
bonding between the silicone resin and glass was 
obtained by immersing the tubes in a 50% solution of 
adhesive primer in heptane for 12 h and then drying 
them at room temperature before use. Rods, glued 
together, were placed along the axis of the tube, which 
was then filled with uncured resin. Curing was effected 
at room temperature for 7 days to avoid cracking 
caused by shrinkage stresses, either at the fibre/resin 
or tube/resin interface, that was encountered on 
cooling from an elevated curing temperature. Typical 
dimensions of a specimen were: rod radius R i 
= 0.435 mm, external radius, Ro, of the resin cylinder 

equal to 3.0 ram, overall length, L, of cylinder equal to 
50 mm. 

Tensile stress-strain relations for the cured silicone 
resins were found to be quite linear up to about 30% 
strain. Young's modulus, E, was determined from the 
slope at small strains to be 2.8 MPa for samples cured 
at l l 0 ~  and 0.87 MPa for samples cured at room 
temperature. 
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Fracture energies, Go, of silicone resin were deter- 
mined at different rates of tear propagation, from 
measurements of the average force required to pro- 
pagate a tear. The results are plotted in Fig. 2 against 
the rate of tearing. Results for both curing conditions 
were approximately the same, even though the values 
of tensile modulus were quite different. As for other 
viscoelastic materials, there is a considerable effect of 
tear rate, the value of Gc increasing from about 
180Jm -2 at a rate of 0.8 gms -1 to about 330 Jm  -2 
at a rate of 2 m m s  -1. In experiments with both 
models of a composite, crack growth took place at 
rates lying in the relatively narrow range: 
5-25 gm s - t .  Thus, the relevant value of Gc in the 
fracture experiments was 200-230 J m 2. 
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Figure 3 F o r c e ~ l i s p l a c e m e n t  re la t ion  for  a s a m p l e  wi th  a p r o p a g a -  

t ing  c rack .  R i - 0 .435 m m ,  R o = 3.0 m m .  

3.2. Measurement of crack size and 
sample compliance 

Specimens were loaded in tension using an Instron 
tensile testing machine equipped with a microscope, 
video camera and recorder to study crack growth as 
the applied tensile load was increased continuously. 
When the steel rods were pulled apart, a crack in- 
itiated at the point where they were initially in contact, 
and grew transversely across the matrix. Its radius, a, 
was measured as the distance from the axis of the rods 
to the crack tip. The relation between load and dis- 
placement was recorded simultaneously, and the com- 
pliance of a specimen containing a crack of a given 
radius was derived from the chord of the 
displacement-load relation at the appropriate dis- 
placement, as shown in Fig. 3. Compliances for vari- 
ous crack radii were obtained in this way in a single 
experiment. A relatively slow rate of stretching, of 
8 I-tm s-1, was employed. All measurements were car- 
ried out at room temperature, about 23 ~ 

Owing to its cylindrical surface, the transparent 
silicone resin served as a lens and magnified the size of 
the crack. The degree of magnification was approxim- 
ately constant as the crack grew, given by the refrac- 
tive index of the resin, 1.41 (see Appendix 1). Correc- 
tions were made to the observed crack radius to allow 
for this magnification. 

In contrast, the applied tensile stress, enhanced 
somewhat by stress concentrations near the crack tip, 
caused the resin cylinder to undergo Poissonian con- 
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traction and the crack became smaller in radius than 
in the unstressed state. A correction for the amount of 
contraction was deduced by FEM, as described in 
Appendix 2. Generally speaking, the effect of magni- 
fication on the apparent crack size was about + 40%, 
and that of Poissonian contraction was about - 10%. 

Fig. 3 shows a typical forcemlisplacement relation 
for a model composite specimen without external 
constraints, loaded in tension. It is linear initially, up 
to the point B. Non-linearity starting at B is attributed 
to crack propagation. Thus, the load at B, about 
3.0 N, is taken as the force required to initiate growth 
of a crack with a radius given by the rod radius. Then, 
as the crack grew, the compliance of the specimen 
increased continuously. 

Linear elastic behaviour of a cracked specimen was 
verified by stretching a sample with a large-diameter 
crack already developed at the rod end, and then 
unloading the specimen before the crack started to 
grow further. A linear relation was obtained between 
load and displacement for this cracked specimen, with 
virtually no hysteresis between loading and unloading 
relations. 

3.3. P re - s t r e s s  d u e  to  thermal  c o n t r a c t i o n  
A curious feature of the experimentally determined 
relations between load and displacement was a small 
offset in the initial portion of the force-displacement 
curve (region O-A in Fig. 3). In effect, a certain force 
was required to pull the rods apart initially. This is 
attributed to a prestress set up by differential thermal 
contraction between the rods and resin as the speci- 
men was cooled down from curing temperature to 
room temperature. As a result, a shrinkage stress 
developed in the resin, pulling the rods together. The 
shrinkage force could be estimated by extrapolating 
the linear behaviour observed at small displacements 
(region A-B) back to the load axis. A residual force of 
about 0.9 N was deduced in this way, approximately 
8% of the maximum load required to break the 
sample. Fig. 4 shows the variation of residual force 
with test temperature. It decreased continuously, be- 
coming zero at 100~ close to the curing temper- 
ature, confirming that the source of this anomalous 
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feature of the load-displacement relation at room 
temperature was a compressive pre-load caused by 
thermal shrinkage of the resin. In contrast, there was 
no thermal contraction in the second composite 
model because the resin was cured at room temper- 
ature in that case. 

3.4. Numerical calculations 
An ADINA FEM program [20] was used to calculate 
compliances of a specimen with different crack radii. 
Eight-noded quadrilateral axisymmetric elements 
with four integration points were used. The mesh is 
shown in Fig. 5. Because of the symmetry of the 
system, only one-half of the specimen was modelled. In 
the radial direction 15 elements were employed, and 
30 elements in the axial direction, between the rod end 
and upper end of the cylinder. For  the second model, 
with external constraints imposed by the outer rigid 
tube, all nodes on the outer surface, radius Ro, were 
fixed. The maximum aspect ratio of mesh elements 
was about 10. 

Both rods and resin were assumed to be linearly 
elastic and nearly incompressible, with Poisson's ratio 
of 0.4999. To make the rods effectively rigid, Young's 
modulus was made 109 times that of resin. Perfect 
bonding was assumed to exist between the rods and 
resin (and between the resin and external tube, in the 
second model). Different radii R i and Ro were employ- 
ed, with the ratio R]Ro ranging from 0.053-0.8. The 
ratio of cylinder length, L, to resin radius, Ro, was 
chosen to be large enough to minimize end effects and 
still give adequate accuracy for determining small 
changes in compliance with crack radius. Preliminary 
results indicated that a value of 16.6 was satisfactory 
in this respect; it was used in all the cases reported 
here. Most of the calculations were carried out for a 
representative specimen with dimensions: R i 
= 0.435 mm, R o = 3 mm, L = 50 mm. 

3.5. Test of validity of FEM results 
The validity of the FEM model was examined by 
solving a simple case for which an analytical solution 
is already known. A penny-shaped crack in the centre 
of a homogeneous elastic cylinder under tension has 
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Figure 5 Sketch of finite e lement  grid for a sample  con ta in ing  a 

crack of radius,  a. The shaded  area  represents  the embedded  rod 

(fibre). 

been widely investigated [21]. An approximate solu- 
tion for a dimensionless stress intensity factor, de- 
noted Y' and defined by the relation 

K = r~ 1/2 Y 'a  1/2 [1 - -  ( a / R ) ] I / Z [ F / T t ( R 2  - a 2 ) ]  (9) 

was obtained by cubic interpolation [21]. This takes 
the form 

Y' = (2/7z) [1 + (1/2) (a/R) - (5/8) (a/R) 2] 

+ 0.268 (a/R) 3 (10) 

When the crack size is much smaller than the radius, 
R, of the cylinder, the value of Y' (now equal to Y, 
Equation 8) is 2/re, in agreement with Sack's result, 
Equation 3. 

Values of the compliance, C, and its derivative, 
OC/OA, with crack area were calculated using the 
present finite element model. Values of Y' calculated 
from them by means of Equations 5, 7 and 9 are 
compared with values from Equation 10 in Fig. 6. 
Agreement is quite good, within 5% over most of the 
range of crack radius. Discrepancies for extremely 
small and extremely large cracks are attributed to the 
use of only 15 elements to represent the entire radial 
distance for crack growth. Thus, small cracks were 
represented by only one or two elements and, for large 
cracks, only one or two elements remained unbroken. 
FEM results would not be expected to be highly 
accurate under these circumstances. 
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Y, (defined by Equation 9) for a penny-shaped crack in a solid 
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4 .  R e s u l t s  a n d  d i s c u s s i o n  
4.1. Results for an unrestrained sample 

(Model  1 ) 
4. 1.1. Compliance as a function of crack size 
Values of compliance were calculated as a function of 
crack radius for various values of rod radius, R i, and 
sample radius, R o. Results for specimens with an ex- 
ternal radius, Ro, of 3 mm are plotted in Fig. 7. The 
compliance increased with increasing crack size, in an 
approximately linear way, and then more rapidl}r as 
the dimensionless crack radius ( a  - R i ) / ( R  o - Ri) ex- 
ceeded about 0.6. And the larger the radius of the 
enclosed rods, the lower was the compliance. Similar 
relations were obtained for samples with different 
external radius, R o. As expected, the compliance was 
smaller for samples of larger radius. 

In the experiments, a circular crack was found to 
grow symmetrically, under increasing load, until it 
reached a certain size, about half-way to the edge of 
the sample. The load then decreased slightly and 
catastrophic failure followed immediately. Stages in 
the growth of a typical crack are shown in Fig. 8. 
Values of sample compliance were recorded continu- 
ously as the crack grew, until the sample fractured. 
Fig. 9 shows a comparison of compliance results from 
FEM and from direct measurement. Good agreement 
is seen to hold where comparison is possible, i.e. until 
catastrophic failure intervened. 

0~ 

f- 
z 0.2 
E 
E 

o.1 
E 
g, 

O o o 

A Z~ ~ 

i 

0.2 

O 
O 

O O O O O O O  

0 

O 

19 

~7 

0 ~  i i i 

o.o 0.4 0.6 o.a 1 .o 

(o -Ri) / (/:?o-/:?i) 

Figure 7 Calculated compliances of Model 1 specimens versus 
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Figure 8 (a, b) Cracks photographed at different stages for a sample 
with rod radius R~ = 0.435 mm, external radius Ro = 3.0 mm. 
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Figure 9 Comparison o f (O)  measured and ( ) calculated corn- 
pliances as a function of crack radius, for a sample of 3.0 m m  
external radius. The vertical line denotes the rod radius, R~. 

4. 1.2. Energy release rates and breaking 
forces 

Rates of change of compliance with crack area # C / O A  

were calculated by a central difference method using 
three successive values of C as a function of crack 
radius. From these results, values of G for a unit 
applied tensile load were obtained using Equation 5. 
They are plotted in Fig. 10 as a function of dimen- 
sionless crack radius, for samples with an external 
radius of 3 mm and different rod radii. Initially, G 
decreases with increasing crack size and then passes 
through a broad shallow minimum at a dimensionless 
crack radius of about 0.5. Similar results were ob- 
tained for different rod radii and with other sample 
radii. 
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Figure  12 Compar ison of applied load F versus crack radius, 
( ) calculated by FEM, with (O) experimentally measured 
values. The vertical line denotes the rod radius, R i. 

Corresponding values of force, F, required to pro- 
pagate a crack were then calculated from Equation 6, 
using the appropriate value of fracture energy, Go, of 
230 J m  -2 for the silicone resin used in the experi- 
ments. They are represented in Fig. 11 b y a  continu- 
ous curve. As a crack starts to grow from its initial 
size, given by the rod radius, an increasing load is seen 
to be needed to propagate it. Thus, crack growth is 
initially stable. But after the required force passes 
through a maximum (and the energy release rate 
passes through a minimum), the system becomes un- 
stable and  catastrophic failure ensues. 

Experimental measurements of crack radius are 
plotted in Figs 11 and 12 against the applied load, for 
comparison with calculated values. Good  agreement 
was obtained, both in the general form of the relation 
for crack propagation force as a function of crack 
radius, and in the breaking force when the crack 
reaches a critical size. A similar degree of agreement 
was obtained with rods and samples of various radii. 
Thus, the theoretical treatment appears to describe the 
process of crack growth with considerable success. 
Experiments could not be continued beyond a dimen- 
sionless crack radius of about 0.5 because the samples 
broke at this point, as predicted. 

4. 1.3. Stress to initiate crack growth 
The applied force, F~, and corresponding stress, %, 
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Figure  11 Comparison of applied load F versus crack radius, 
( ) calculated by FEM, with (�9 experimentally measured 
values. The vertical line denotes the rod radius R~. 

required to initiate crack growth were estimated using 
Equation 6. Initial values of G were obtained by fitting 
calculated values to a five-term polynomial function of 
crack radius and then extrapolating back to a crack 
radius equal to that of the rod. Values of Fi and c h 
obtained in this way are given in Table I. They 
increase as the radius of the rods, and hence the radius 
of the starter crack, increases. This is in striking 
contrast to an isolated circular crack, Equation 3, 
where larger cracks require smaller stresses to propag- 
ate them. Apparently the presence of rigid bonded 
rods has a protective effect on cracks formed at their 
ends. 

The effect of sample radius is also shown in Table I. 
For  a given rod radius, the stress, o~, required to 
initiate a crack was found to decrease as the sample 
radius increased, although the force, of course, in- 
creased. 

4. 1.4. Breaking stress 
Values of breaking force, F b ,  and breaking stress, o b, 
were calculated from minimum values of G, using 
Equation 6. The results are given in Table I. When the 
rod radius was smaller than about 0.5Re, the min- 
imum value of G was found to be approximately 
constant, and was reached at a critical crack radius, ac, 
of about (Ri + Re)/2, i.e. when the crack was about 
half-way to the edge of the sample. On the other hand, 
when the rod radius was larger than about 0.5Re, the 
minimum value of G was larger and occurred at a 
smaller crack radius. In other words, when the rod 
radius is smaller than about one-half of the sample 
radius, fracture would be expected at a dimensionless 
crack radius of about 0.5 at a constant force, inde- 
pendent of rod radius, but when the rod radius is 
larger than this, fracture is predicted to occur at an 
earlier stage of crack growth and at a smaller force. In 
contrast, the force required to start a crack growing 
depends directly upon its initial radius, R i, as shown in 
Table I: the larger the value of R i, the larger the force 
needed to initiate crack growth. Experimental results 
were in good agreement with these predictions in all 
c a s e s .  

Samples with a larger external radius were found to 
break at a lower stress, even though the breaking force 
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T A B L E I Calculated and measured forces, F, and stresses, or, to initiate a crack ( Fi, r and cause catastrophic rupture ( Fb, O'b) in Model 1 
specimens 

Calculated Measured Calculated 

Ri Ro Fi cri Fb ~b Fi Fb a~ ~b 
(mm) (mm) (N) (N m m -  z) (N) (N mm 2) (N) (N) (ram) (N m m -  2) 

0.16 3.0 2.5 0.09 11.9 0.42 1.58 0.65 
0.3 3.0 3.0 0.11 11.7 0.41 1.65 0.64 
0.435 3.0 3.5 0.12 11.3 0.40 2.9 10.6 1.72 0.63 
0.6 3.0 4.0 0.14 11.1 0.39 1.80 0.61 
0.78 3.0 4.6 0.16 12.0 0.42 3.9 10.9 1.89 0.60 
1.0 3.0 5.1 0.18 11.6 0.41 4.7 11.2 2.00 0.58 
1.16 3.0 5.2 0.18 11.5 0.41 5.5 10.6 2.08 0.57 
1.5 3.0 5.5 0.19 10.7 0.38 2.25 0.55 
2.0 3.0 5.1 0.18 9.1 0.32 2.42 0.53 
2.4 3.0 4.2 0.15 8.1 0.29 2.64 0.51 
0.435 0.545 0.4 0.43 0.6 0.62 0.49 1.17 
0.435 1.45 1.3 0.20 3.7 0.56 0.94 0.85 
0.435 2.18 2.2 0.15 6.8 0.46 1.31 0.72 
0.435 5.6 6.9 0.07 28.6 0.29 11.3 32.3 3.02 0.47 

"Value when G is a minimum. 
b Calculated from Equation 3 at the critical crack radius, a c. 

was higher, Table I. In fact, the breaking stress was 
somewhat smaller (0.55-0.7 times) than the corres- 
ponding value for an isolated circular crack of the 
same radius in a homogeneous solid, Table I. Thus, 
although embedded rods strengthen a sample initially 
and prevent small cracks from growing catastroph- 
ically, they have a slight weakening effect when the 
crack reaches its critical size. 

It should be noted that the stress to fracture a 
composite depends on both R i and R o separately, and 
not on the ratio Ri/Ro. For example, if we compare a 
sample with R~ = 2.4 mm and R o = 3.0 mm with an- 
other sample with R i =  0.435mm and Ro 
= 0.545 ram, both composites have the same R~/R,, 

ratio but the breaking stresses are different: 0.29 and 
0.62 N m m -  2 

All of the FEM results indicate the rather surprising 
feature that a crack will grow from a fibre break in a 
stable way, requiring an increasing tensile load, until it 
is about half-way to the edge of the specimen. This is 
in marked contrast to a crack in a homogeneous 
medium or at the horizontal interface between an 
elastic and a rigid material, when all cracks are, in 
principle, unstable. 

In a fibre fragmentation test, cracking of the resin is 
sometimes observed, originating at the broken fibre 
ends [13-15]. Diameters of these resin cracks can be 
several hundred times larger than the fibre diameter 
without fracturing the specimen [13]. This feature is 
consistent with the observations of crack growth and 
crack stability reported here. 

4.2. Effect of neighbouring fibres (Model  2) 
A rigid cylindrical tube bonded to the external surface 
of the matrix is used here to represent neighbo-uring 
fibres surrounding a broken fibre. Calculated com- 
pliances for different values of rod radius, Ri, are 
plotted in Fig. 13 as a function of dimensionless crack 
radius. When the dimensionless crack radius is greater 
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Figure 13 Compliances calculated by FEM for Model 2 specimens, 
with various values of rod radius Rj (mm): (�9 0.435, (O) 1.00, (A) 
2.130. Ro = 3.0 mm. 

than about 0.5, the compliance is seen to reach a 
substantially constant value. Corresponding values of 
the energy release rate, G, obtained as before from the 
rate of change of compliance with crack area, are 
plotted in Fig. 14. They are seen to decrease over the 
entire range of crack radius. Thus, stable crack growth 
would be expected for all sizes of crack, until the crack 
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Figure 14 Calculated energy release rate, G, versus dimensionless 
crack radius for Model 2 specimens subjected to unit applied load. 
Ri (mm): (�9 0.435, (O) 1.00, (A) 2.00; Ro = 3.0 mm. 



reaches the surface of the externally restraining tube. 
Addition of the rigid tube has thus made crack growth 
more difficult and there is now no tendency for cata- 
strophic growth to occur. 

Force-displacement relations were determined ex- 
perimentally for samples with a rigid tube bonded to 
the external surface of the resin. Forces due to thermal 
contraction were absent and, because of the external 
restraint, Poissonian contraction did not occur. Thus, 
only the effect of optical magnification needed to be 
taken into account in determining crack radii. The 
refractive index of the glass tube was assumed to be 
the same as that of the silicone resin. 

Cracks could be observed up to a radius of 2.7 mm 
in a sample with resin radius of 3.0 mm, corresponding 
to a dimensionless crack radius of 0.9, before internal 
reflection prevented further viewing. Crack growth 
was stable up to the limit of observation. A com- 
parison is made in Fig. 15 between the calculated 
relation for crack radius as a function of applied force, 
represented by the full curve, and experimental meas- 
urements. Good agreement is seen to obtain over the 
entire range of crack radius, using a value for resin 
fracture energy, G c, of 230 J m - 2 as indicated by direct 
measurements on the resin. 

Crack growth began at an applied force of 9.5 N, 
close to the value, 8.4 N, obtained by extrapolating 
FEM results to the initial crack size. Further crack 
growth required a larger force. It is clear that the 
presence of the external tube, representing neigh- 
bouring fibres around a broken fibre, tends to make 
resin cracking more difficult and prevent it from be- 
coming catastrophic. 

Thus, both the form of the crack-growth relation 
and the actual values of crack driving force appear to 
be predicted successfully for the second model, as well 
as for the first. 

The fibre content of the composite is represented in 
Model 2 by the ratio of cross-sectional areas of fibre 
and sample, (Ri/Ro) 2. As this ratio was increased, 
the force required to propagate a crack increased, 
Fable II. 

5. C o n c l u s i o n s  
In general, materials fail when the energy release rate 
of the system reaches a critical value, Go. This criterion 
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Figure 15 ( ) Calculated and (�9 measured values of applied 
load, F, versus crack radius for a Model 2 specimen. R~ (represented 
by the vertical line) = 0.435 mm; Ro = 3.0 mm. 

T A B L E  II Calculated and measured forces, F~, to initiate a crack 
in Model 2 specimens 

R i Ro F i F i 
(mm) (mm) (N) (N) 

calculated measured 

0.15 3.0 6.0 
1.0 3.0 11.8 
2.0 3.0 16.8 
0.435 2.0 7.5 
0.435 3.0 8.4 
0.435 4.0 9.9 

9.5 
10.3 

is widely used in linear elastic fracture mechanics. If 
d G / d A  is negative, an increased stress is needed to 
maintain crack growth. This results in stable crack 
growth. It has been shown that a circular crack, 
created by fibre fracture in a single-fibre model com- 
posite, is stable in this way until it reaches a relatively 
large radius, about half-way to the surface of the 
cylindrical resin block containing the fibre. Experi- 
mental observations are in agreement with these con- 
clusions. The force required to propagate a crack was 
found to be in good agreement with values predicted 
by linear elastic fracture mechanics at all stages of 
crack growth. In particular, the maximum force that 
the system could support (the breaking load) was 
predicted successfully for a range of dimensions. On 
the other hand, for a model surrounded by a rigid tube 
representing neighbouring fibres in a closely packed 
fibre composite, a crack growing outwards from a 
broken fibre was predicted to be stable at all stages of 
growth, requiring an increasing force to make it grow 
further. Again, good agreement was found between 
calculated and measured values. Eventually, these spe- 
cimens broke by failure of the resin in shear, after the 
crack tip had reached the edge of the resin cylinder. A 
similar analysis of this mode of failure is therefore 
being attempted. 
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A p p e n d i x  1 
Magnification of the apparent crack radius by the 
cylinder of resin surrounding it can be calculated as 
follows. As shown in Fig. A1, the angles 0 a and 0 b of 
light rays emerging from the cylinder can be expressed 
by Snell's law 

sin0 a = n (yo/Ro) (A1) 

sin 0b = n sin [ tan-1 (yo/Ro)] (A2) 

where n is the refractive index of the resin (n = 1.41), 
R o is the radius of the resin cylinder, and yo is the crack 
radius. Equations for the light path are 
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Figure A! Sketch of light-ray paths 1 and 2 to indicate optical 
magnification of crack by the resin cylinder acting as a lens. 

y - y o  = - F ~  - ( g o  ~ - 7o2)3 ~/~ 

• tan [0~ - sin- 1 (Yo/Ro)] (A3) 

y = - (x  - Ro) t a n  0b ( A 4 )  

The degree of magnification Y/Yo can be determined 
by inserting the actual crack size, Yo, into the above 
equations and solving for y. A calibration curve is 
given in Fig. A2, and compared with experimental 
measurements of the degree of magnification. Over a 
wide range, the magnification is about 1.4, approx- 
imately the same as the value for small angles, given by 
the refractive index of the resin. 

Total internal reflection occurred when the incident 
angle was larger than a critical value. This made it 
impossible to measure a crack radius larger than 
about 70% of the cylinder radius. 

Appendix 2 
When a cracked specimen is subjected to a tensile 
force under which the crack does not propagate but 
merely opens, the crack is reduced in radius by Pois- 
sonian contraction of the entire specimen. The meas- 
ured crack radius is thus smaller than its actual size in 
the unstrained state. The higher the stress, the larger 
the discrepancy. An estimate of the amount of lateral 
contraction can be obtained by FEM, by determining 
the relative lateral contractile displacement of the 

2.0 

1.8 

o 1.6 

!it 
J 

o i i I 

0.0 0.2 0.4 0.6 0.8 1.0 

ReLative crock size, yo/Ro 

Figure A2 Calculated magnification y/yo of the crack radius; ( a )  
measured, ( ) predicted. 
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Figure A3 Poissonian contraction of the crack radius. Lateral dis- 
placement (contraction) 6' of the crack tip versus longitudinal 
displacement (extension) 6 of the sample, for unit applied load. Ri 
= 0.435 ram, Ro = 3.0 ram. 

crack tip, 8', and longitudinal tensile displacement of 
the upper surface of the cylinder, 8, for unit applied 
tensile load. A plot of 8' versus 8 is presented in Fig. 
A3 for a sample with rod radius R~ = 0.435 mm and 
resin radius R o = 3.0 mm. The actual crack radius is 
then given by 

aaetua= = aob . . . . .  a + 8' ( A 5 )  
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